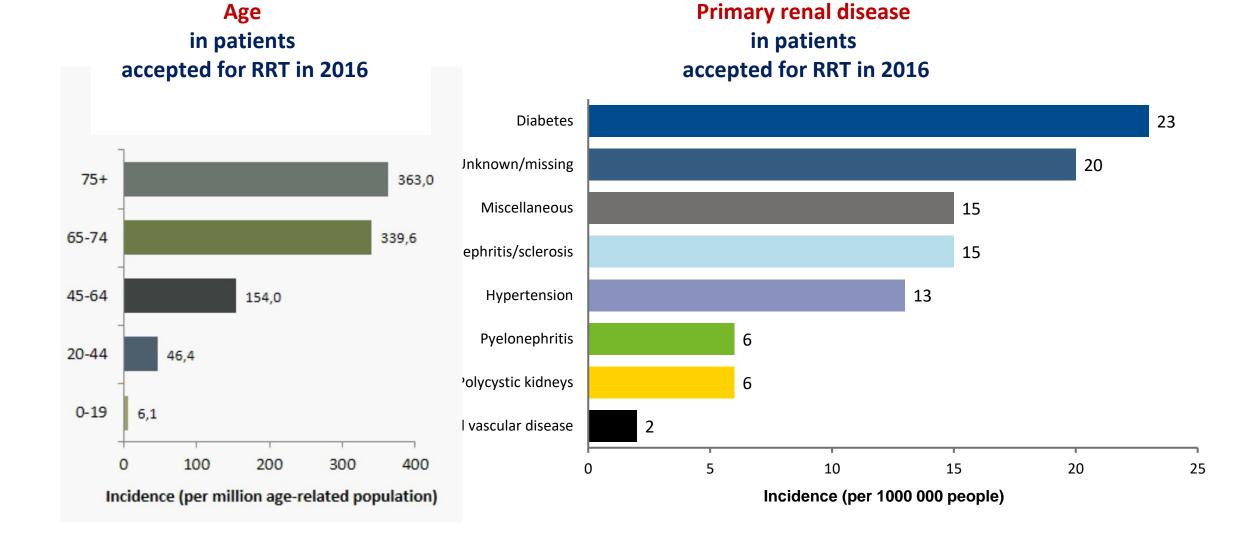


Il Paziente Diabetico Anziano:

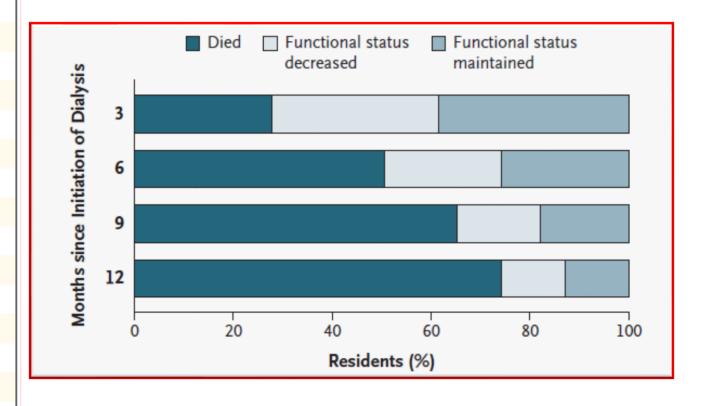
Strategie del Trattamento del Diabete e Protezione Renale


Luca De Nicola *UO Nefrologia e Dialisi*

Scuola di Medicina e Chirurgia

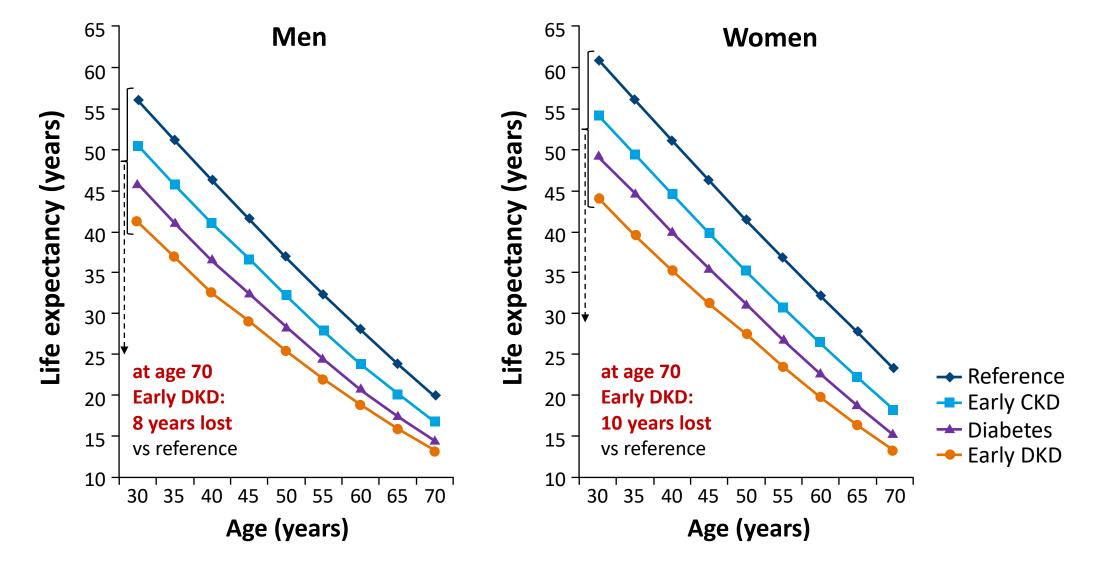
Dipartimento di Scienze Mediche e Chirurgiche Avanzate

Older age and diabetes are the two main features of patients starting dialysis



Data from the ERA–EDTA registry 52 national and regional registries (N = 6.87 million) Kramer , Clinical Kidney J , 2019

Table 1. Characteristics of the Subjects at the Initiation of Dialysis.*						
Characteristic	Subjects †					
Age (yr)	73.4±10.9					
Estimated glomerular filtration rate (ml/min/1.73 m² of body-surface area)	10.7±4.9					
Albumin (g/dl)	2.9±0.6					
Female sex (%)	60					
Race (%)‡						
White	64					
Black	32					
Other	4					
Coexisting condition (%)						
Diabetes	68					
Congestive heart failure	66					
Coronary artery disease	44					
Peripheral vascular disease	37					
Cerebrovascular disease	39					
Chronic obstructive pulmonary disease	24					
Cancer	12					
Dementia	22					
Depression	35					
Hemodialysis (vs. peritoneal dialysis) (%)	95					
Hospitalized at initiation of dialysis (%)	69					


Functional Status of Elderly Adults before and after Initiation of Dialysis

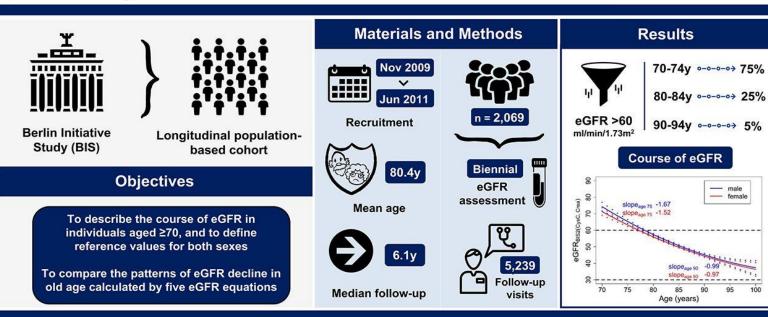
3702 nursing home residents in US who started HD between 6/1998 and 10/2000 and with at least one measurement of functional status available before dialysis

Kurella Tamura, NEJM 2009

Diabetic Kidney Disease (DKD) shortens life span... ...well before dialysis and at all ages

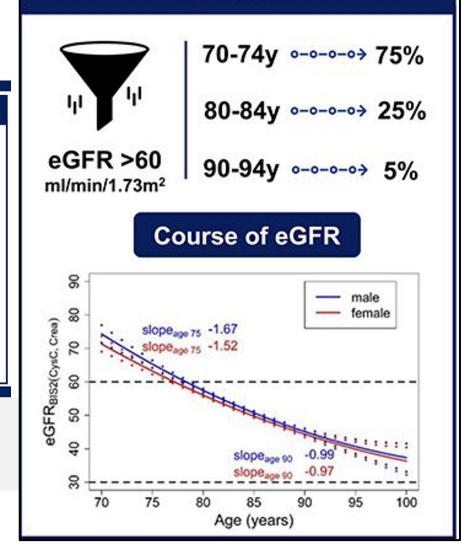
In the treatment of CKD

Preserving Kidney Function Instead of Replacing It


Alan S. Kliger,¹ and Frank C. Brosius,² on behalf of the Diabetic Kidney Disease Task Force of the American Society of Nephrology*

It is time for nephrology to embrace a change in paradigm: returning to our traditional focus on pathophysiology and kidney preservation.

CJASN 15: 129-131, 2020.


The Aging Kidney (I)...

Age and the course of glomerular filtration rate in persons aged 70 and above

Results

CJASN

Elke S. Schaeffner et al. CJASN 2022;17:1119-1128

The Aging Kidney (II)...

Age as a determinant of renal sodium conservation in normal man

MURRAY EPSTEIN,* and NORMAN K. HOLLENBERG Miami, Fla. and Boston, Mass.

Age modifies a number of factors which determine renal sodium handling including the rate of glomerular filtration, renal hemodynamics, and the responsiveness of the renin-angiotensin-aldosterone system. This study was carried out, therefore, to examine the effects of age on the capacity of the normal human kidney to respond to restriction of sodium intake. Renal conservation of sodium and response to dietary sodium restriction was assessed in 89 healthy subjects who were free of cardiovascular, renal, or adrenal disease. The daily reduction in urine sodium which followed restriction of intake to 10 mEq. of sodium and 100 mEq. of potassium per day conformed well to an exponential function, defined by an unweighted least-squares fit. The half-time for the reduction in renal sodium excretion in subjects under 30 years was -17.6 ± 0.7 hours, significantly faster than for subjects aged 30 to 59, who had a relatively constant half-time (23.4 ± 1.1 hours). In subjects over 60 years of age the half-time was prolonged to 30.9 ± 2.8 hours, significantly greater than that of the younger age group. These observations indicate that age significantly influences the kidney's capacity to conserve sodium. Age-related change must be considered in the assessment of this function in human disease.

The Aging Kidney (III)...

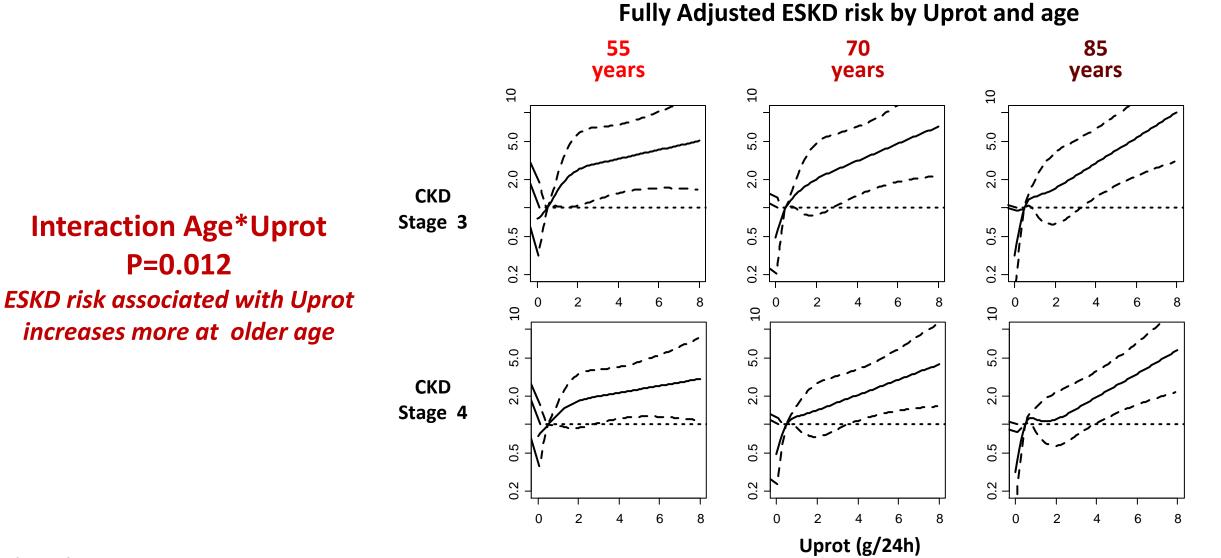
Community-based incidence of acute renal failure

C-y Hsu¹, CE McCulloch², D Fan³, JD Ordoñez⁴, GM Chertow^{1,2} and AS Go^{1,2,3}

- Health care delivery system –Kaiser Permanente of Northern California
- 15 953 549 person-years of observation in the 1996-2003 period
- ARF definition (Hou) increase in sCreat of:
 - > 0.5 mg/dl if basal <1.9 mg/dl
 - 1.0 mg/dl if basal 2.0-4.9 mg/dl
 - > 1.5 mg/dl if basal ≥5.0 mg/dl.

Nephroprotective agents in older versus younger DKD patients Target, Efficacy, Safety ???

The Aging Kidney (III)...


Community-based incidence of acute renal failure

C-y Hsu¹, CE McCulloch², D Fan³, JD Ordoñez⁴, GM Chertow^{1,2} and AS Go^{1,2,3}

	Overall rate (95% CI)	By age group
996-2003	384.1 (381.1-387.2)	Age < 50: 78.0 (76.3–79.7)
		Age 50-59: 320.0 (313.2-326.9)
		Age 60-69: 814.8 (801.3-828.3)
		Age 70-79: 1809.1 (1783.5-1834.7)
		Age≥80: 3545.4 (3481.4-3609.5)
1996–1997	322.7 (316.7-328.5)	Age < 50: 64.7 (61.4-68.0)
		Age 50-59: 224.5 (212.6-236.3)
		Age 60-69: 597.8 (574.4-621.3)
		Age 70-79: 1362.1 (1318.3-1405.9)
		Age≥80: 2867.5 (2760.9-2974.2)
1998–1999	388.3 (382.1-394.5)	Age < 50: 72.9 (69.5–76.2)
		Age 50-59: 303.8 (290.4-317.3)
		Age 60-69: 796.6 (770.0-823.3)
		Age 70–79: 1813.2 (1762.2–1864.2)
		Age≥80: 3796.3 (3665.5-3927.1)
2000-2001	453.6 (447.1-460.1)	Age < 50: 90.7 (87.1-94.3)
		Age 50-59: 393.7 (378.6-408.9)
		Age 60-69: 985.9 (956.4-1015.4)
		Age 70-79: 2220.7 (2164.1-2277.4)
		Age≥80: 4388.0 (4293.9-4590.4)
2002-2003	522.4 (515.5-529.3)	Age < 50: 106.4 (102.6-110.2)
		Age 50-59: 483.8 (467.2-500.3)
		Age 60-69: 1238.2 (1205.2-1271.3)
		Age 70-79: 2741.3 (2677.1-2805.4)
		Age≥80: 4884.3 (4722.8-5045.7)

Kidney International (2007)

Proteinuria as target of nephroprotective therapies... ...at older age the prognostic role of proteinuria on ESKD is higher !!!

De Nicola L et al., KI 2012

Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO)

í le

BP cuff, BP lowering

A heart, cardioprotection

kidney, kidney protection

Scale, weight management

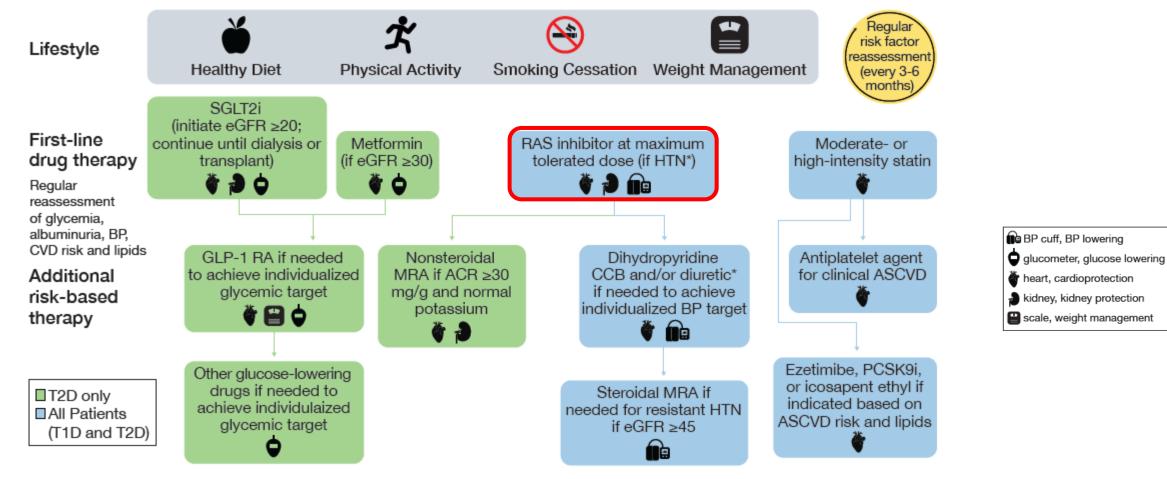
glucometer, glucose lowering

Novel holistic approach 1 Regular risk factor Lifestyle reassessment Smoking Cessation Healthy Diet Physical Activity Weight Management (every 3-6 months SGLT2i (initiate eGFR \geq 20; First-line RAS inhibitor at maximum continue until dialvsis or Metformin Moderate- or drug therapy transplant) (if eGFR \geq 30) tolerated dose (if HTN*) high-intensity statin ڻ 🕯 ë j în Ó Regular reassessment of glycemia, albuminuria, BP, CVD risk and lipids GLP-1 RA if needed Nonsteroidal Dihydropyridine Antiplatelet agent CCB and/or diuretic* for clinical ASCVD Additional to achieve individualized MRA if ACR ≥30 if needed to achieve glycemic target mg/g and normal risk-based individualized BP target potassium therapy n a 6 4 Ezetimibe, PCSK9i, Other glucose-lowering or icosapent ethyl if drugs if needed to Steroidal MRA if T2D only indicated based on achieve individulaized needed for resistant HTN All Patients ASCVD risk and lipids glycemic target if eGFR >45(T1D and T2D)

Low Salt Diet: Yes but...caution in older !!!

Predictive effect of salt intake on patient and kidney survival in non-dialysis CKD: competing risk analysis in older versus younger patients under nephrology care

- 769 younger vs 1016 older CKD pts from 40 Italian renal clinics (30% DM2)
- eGFR: 41±25 in younger and 34±16 in older
- ➢ Median salt intake on
 ≥ 2 measurements of 24h UNaV:
 - 8.6 g/24h in younger
 - 8.2 g/24h in older


	<6 g/day	6-8 g/day	>8 g/day
	HR (95% CI)	HR (95% CI)	HR (95% CI)
ESKD risk			
	Reference	1.189	1.096
Age ≤65	Reference	(0.788-1.795)	(0.763-1.574)
	1.024	0.577	0.564
Age >65	(0.656-1.599)	(0.361-0.924)	(0.382-0.833)
Death risk			
	Deference	0.791	0.620
Age ≤65	Reference	(0.318-1.966)	(0.275-1.397)
A 65	3.810	3.695	2.938
Age >65	(1.829-7.936)	(1.808-7.550)	(1.457-5.926)

Adjusted for gender, BMI, DM, primary renal disease, history of CVD, SBP, eGFR, Uprot, Hb, sP, albumin, RAASI, diuretics

Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO)

Novel holistic approach

Key trials on nephroprotective effects of RAS inhibition in CKD

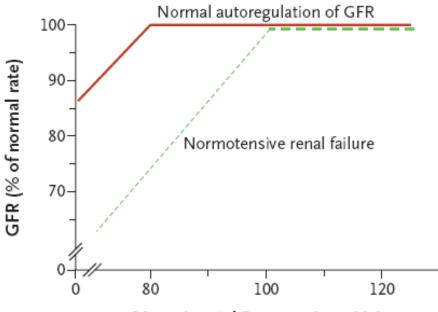
Studio	Popolazione	Tipo di intervento	Endpoint	Riduzione del rischio renale connesso all'albuminuria
RENAAL ⁷	Nefropatia in DMT2	Losartan vs placebo	Raddoppio creatinina, ESRD o morte	Nei primi 6 mesi per ogni dimezzamento dell'albuminuria si aveva una riduzione del 50% del rischio di ESRD
IDNT ⁸	Nefropatia in DMT2	lrbesartan vs amlodipina vs placebo	Raddoppio creatinina, ESRD	Nei primi 12 mesi per ogni dimezzamento dell'albuminuria si aveva una riduzione del 56% del rischio di endpoint
AASK ⁹	Nefrosclerosi ir	iddl	ESRD	Nei primi 6 mesi per ogni dimezzamento dell'albuminuria si aveva una riduzione significativa del 53% del rischio di ESRD
ROAD ¹⁰	Nefropatia - IgA	benazepn	ESRD	ll rischio era 80% minore fra i soggetti che avevano avuto una riduzione della proteinuria >50% vs riduzione <25%
REIN ¹¹	Nefropatia non diabetica	Ramipril vs placebo	Decline	dell'eGFR minore nei pazienti con proteinuria al terzo mese ml/min/1.73 m²)
IRMA-2 ¹²	Microalbuminuria in DMT2	lrbesartan vs placebo	Declino dell'eGFR	Declino de geGFR (ml/min/1.73 m²) di 1.1 per riduzione >50% dell'albuminuria vs 2.6 per aumento dell'albuminuria >34%
ONTARGET ¹³	Alto rischio cardiovascolare	Ramipril vs telmisartan vs ramipril e telmisartan	Raddoppio creatinina, ESRD	Diminuzione di 2 volte dell'albuminuria associata a una riduzione relativa del rischio renale del 27% vs nessun cambiamento nell'albuminuria

Interpreting Treatment Effects From Clinical Trials in the

Context of Real-World Risk Information

End-Stage Renal Disease Prevention in Older Adults

- Retrospective CKD cohort of VA hospitals
- 371,470 older pts (mean age 78 y), DM2 47%, all treated with anti-RAS
- Comparing number needed to treat (NNT) to prevent 1 case of ESKD over 3 yrs in real-world cohort vs key trials


Percentage	Entry Criteria Mortality, % ESRD, % ESRD Outcomes ^a Percentage of Patients Who Developed ESRD Within 3 Years of Cohort Entry and Corresponding ARR and NNT ESRD Outcomes ^a											
	Level of eGFR, mL/min/1.73 m ²											
Dipstick Proteinuria	(n		45-59 (n = 223 119)		(n :	30-44 (n = 103 671)		(n	15-29 (n = 27 591)			
Measurement	ESRD, %	ARR, %	NNT	ESRD, %	ARR, %	NNT	ESRD, %	ARR, %	NNT	ESRD, %	ARR, %	NNT
Negative or trace (n = 137 175)	NA	NA	NA	0.13	0.04	2500	0.49	0.15	667	4.43	1.33	75
1+ (n = 26655)	0.13	0.04	2500	0.31	0.09	1111	0.86	0.26	385	9.55	2.87	35
≥2+ (n = 22 536)	0.25	0.08	1250	0.98	0.29	345	3.58	1.07	94	21.17	6.35	16
Unmeasured (n = 185 104)	NA	NA	NA	0.19	0.06	1667	0.83	0.25	400	8.47	2.54	39
et al,²¹ 2001	amlodipin besylate	9			nL/min/ L.73 m ²	of prote creatinii levels, ≤ mg/mg	пе					

Extent of anti-RAS related nephroprotection seen in realworld older patients is markedly reduced vs the key RCTs... ...especially if patients are low-proteinuric !!!

RASi can increase risk of Normotensive AKI in older CKD patients

Mild salt restriction (6-8 g/day) in older
 Strict monitoring of kidney function
 Prompt intervention in ECV depletion

Ischemic Acute Kidney Injury despite SBP 90-100 mmHg *impaired autoregulation*

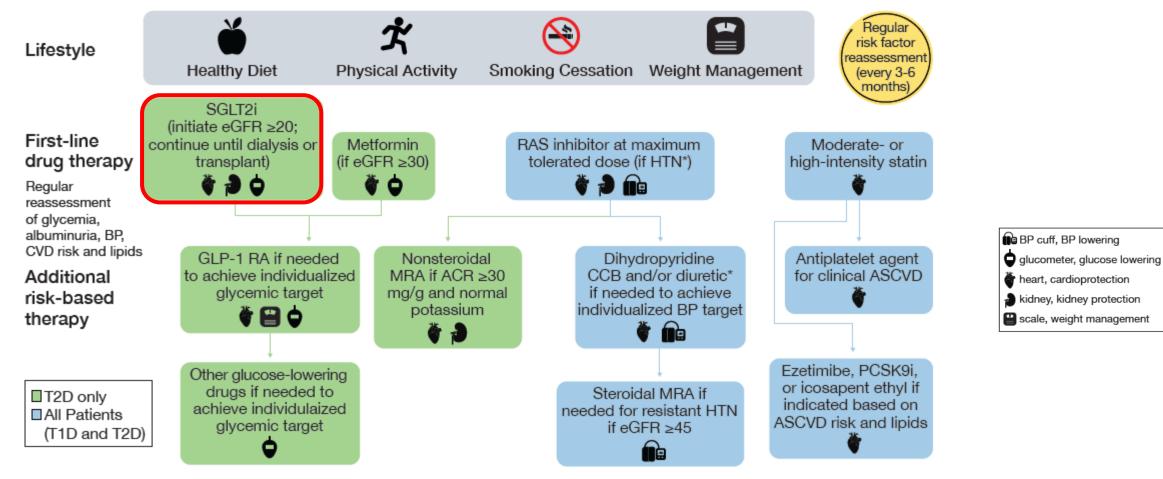

Mean Arterial Pressure (mm Hg)

Table 1. Factors Increasing Susceptibility to Renal Hypoperfusion. Failure to decrease arteriolar resistance Structural changes in renal arterioles and small arteries Old age Atherosclerosis Chronic hypertension Chronic kidney disease Malignant or accelerated hypertension Reduction in vasodilatory prostaglandins Nonsteroidal antiinflammatory drugs Cyclooxygenase-2 inhibitors Afferent glomerular arteriolar vasoconstriction Sepsis Hypercalcemia Hepatorenal syndrome Cyclosporine or tacrolimus Radiocontrast agents Failure to increase efferent arteriolar resistance Angiotensin-converting-enzyme inhibitors Angiotensin-receptor blockers Renal-artery stenosis

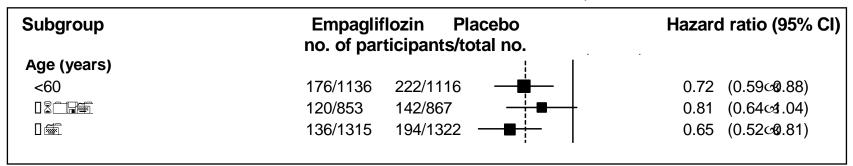
Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO)

Novel holistic approach

Kidney Int, 2022

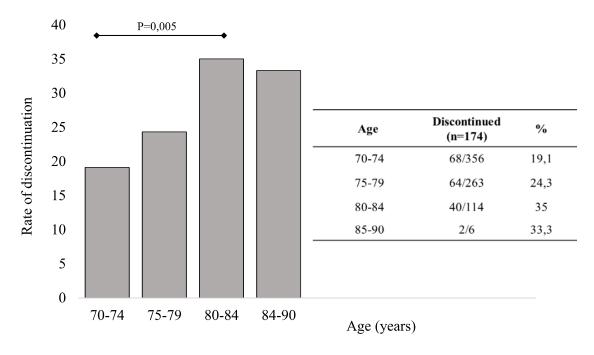
CREDENCE Nephroprotection according to Age and Sex: **Post Hoc Analysis of the CREDENCE trial**

Outcome Age group	Event Cana/P			Hazard Ratio 95% Cl	P-value	Pinteraction
Primary composite outc	ome					0.3
<60	53.7	78.1		0.67 (0.52, 0.87)	0.003	
60-69	38.3	59.4		0.63 (0.48, 0.82)	<0.001	
≥70	38.1	42.6		0.89 (0.61, 1.29)	0.5	
Kidney composite						0.7
<60	42.2	61.7		0.67 (0.50, 0.89)	0.006	
60-69	22.6	37.2		0.59 (0.42, 0.82)	0.002	
≥70	14.7	18.2		- 0.80 (0.45, 1.44)	0.5	
Cardiovascular death						0.2
<60	14.3	19.7		0.73 (0.45, 1.20)	0.2	
60-69	17.8	27.6		0.64 (0.44, 0.94)	0.02	
≥70	27.5	25.4		1.08 (0.68, 1.69)	0.8	
Major adverse cardiovas	scular ever	nt				0.1
<60	32.1	38.4		0.84 (0.60, 1.19)	0.3	
60-69	36.0	55.4		0.65 (0.49, 0.85)	0.002	
≥70	52.9	51.5		- 1.01 (0.72, 1.40)	0.9	
Heart failure						0.7
<60	9.6	15.8		0.60 (0.34, 1.08)	0.09	
60-69	17.0	30.4		0.56 (0.38, 0.82)	0.003	
≥70	21.5	29.9		0.71 (0.44, 1.14)	0.2	
All-cause mortality						0.5
<60	24.9	25.9		- 0.97 (0.65, 1.44)	0.9	
60-69	27.4	38.2		0.71 (0.52, 0.98)	0.03	
≥70	37.7	41.9		0.89 (0.61, 1.29)	0.5	
			Favours canagliflozin Favo	urs placebo		
			0.50 1.00	1.50		


Dapagliflozin in Patients with Chronic Kidney Disease

DAPA-CKD Trial Committees and Investigators

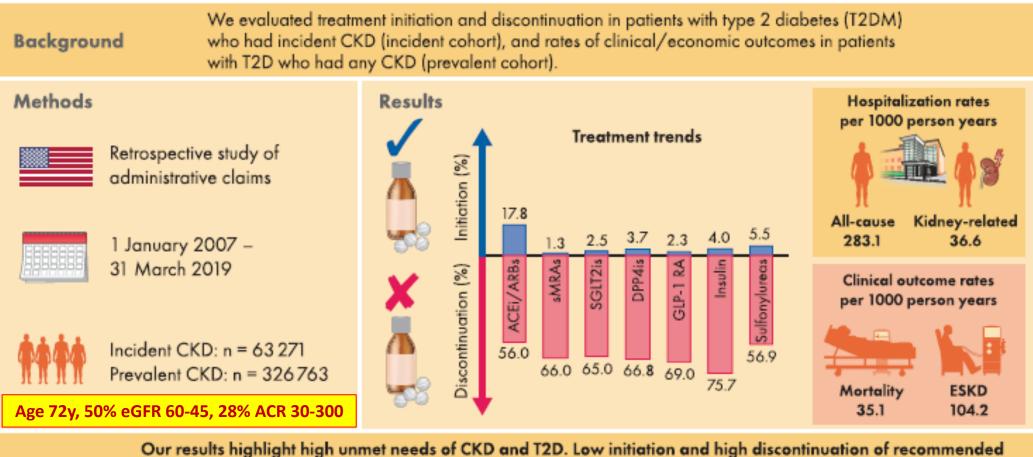
Subgroup	Dapagliflozin	Placebo	Hazard Ratio (95% CI)	
	no. of participa	nts/total no.		
All participants	197/2152	312/2152	⊢ ∎1	0.61 (0.51-0.72)
Age				
≤65 yr	122/1247	191/1239	F	0.64 (0.51-0.80)
>65 yr	75/905	121/913	· · · · · · · · · · · · · · · · · · ·	0.58 (0.43–0.77)


Empagliflozin in Patients with Chronic Kidney Disease

The EMPA-KIDNEY Collaborative Group*

SGLT2-I in elderly are efficacious on HbA1c...but higher discontinuation !

- 739 adults (mean age 75.4 ±3.9 years, eGFR 73 ±19) with T2D
- SGLT2i started after the age of 70 with at least one year of FU
- Data collected at baseline, at 6 and 12 months of follow-up
- 174 (23.5%) interrupted SGLT2i after 6 or 12 months.



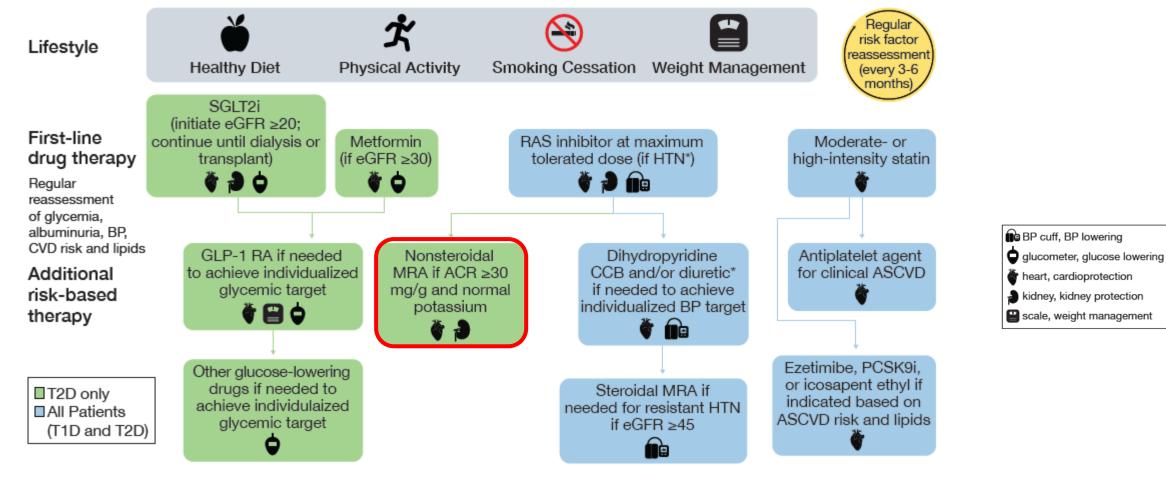
Discontinuation rate for SGLT2i treatment according to age.

Baseline characteristics of subjects that discontinued or maintained the SGLT2i treatment.

	Discontinued (n = 174)	Ongoing $(n = 565)$	P value
Age (yrs)	75.8 ± 4.2	74.7 ± 3.8	0.002
Sex (M/F)	101/73	<mark>319/246</mark>	<mark>0.390</mark>
BMI (Kg/m ²)	27.9 ± 3.3	<mark>29.</mark> 2 ± 4.7	0.001
Weight (Kg)	$\textbf{78.0} \pm \textbf{11.3}$	79.3 \pm 14.6	0.067
FPG (mg/dL)	184.6 ± 55.9	$\textbf{184.8} \pm \textbf{43.3}$	0.954
HbA1c (%, mmol/mol)	$8.1\pm1.03\text{,}$	7.8 ± 1.1 ,	0.001
	65.0 ± 8.2	62.0 ± 8.7	
S-Creatinine (mg/dL)	$\textbf{0.98} \pm \textbf{0.16}$	$\textbf{0.91} \pm \textbf{0.19}$	0.000
eGFR (mL/min/1,73 m ²)	$\textbf{67.2} \pm \textbf{12.4}$	$\textbf{75.4} \pm \textbf{20.1}$	0.000
U-Albumin (mg/L)	$\textbf{32.8} \pm \textbf{37.7}$	$\textbf{35.0} \pm \textbf{74.0}$	0.722
Total cholesterol (mg/dL)	183.5 ± 35.3	$\textbf{174.0} \pm \textbf{36.0}$	0.000
HDL (mg/dL)	$\textbf{41.4} \pm \textbf{10.6}$	$\textbf{45.3} \pm \textbf{12.6}$	0.000
LDL (mg/dL)	117.3 ± 35.3	103.3 ± 35.4	0.000
Tryglicerides (mg/dL)	130.8 ± 40.2	141.8 ± 69.0	0.055
Ejection Fraction (%)	45.9 ± 7.6	52.3 ± 7.8	0.000

High unmet treatment needs in patients with chronic kidney disease and type 2 diabetes: real-world evidence from a US claims database

Conclusion treatments suggest that adherence to guidelines for halting CKD progression is suboptimal. These high-risk patients may benefit from further treatment options to improve morbidity and mortality and reduce the economic burden.


EPHROLOGY

ANSPLANTATION

Fried, L., et al. NDT (2022) @NDTSocial Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO)

Novel holistic approach

Finerenone had consistent effects on the primary kidney endpoint irrespective of age

Subgroup	Finerenone	Placebo	Finerenone	Placebo	Hazar	d ratio (95% CI)
		N	n per 1	00 PY		
All patients	504/2833	600/2841	7.59	9.08	нф	0.82 (0.73–0.93)
Age at run-in visit						
<65 years	267/1205	302/1174	9.70	11.29	⊢ ◆-	0.85 (0.72–1.01)
≥65 years	237/1628	298/1667	6.09	7.58		0.79 (0.67–0.94)
Sex					•	
Male	351/1953	432/2030	7.60	9.14		0.81 (0.70–0.93)
Female	153/880	168/811	7.57	8.93		0.87 (0.70–1.09)
Region						
Europe	177/1182	196/1176	6.17	6.82		0.92 (0.75–1.12)
North America	95/467	110/477	8.76	10.14		0.84 (0.64–1.10)
Latin America	58/295	64/298	10.01	11.17		0.91 (0.64–1.30)
Asia	160/790	213/789	8.50	11.61		0.71 (0.58–0.87)
Other	14/99	17/101	6.24	7.12		0.90 (0.45–1.83)
Race						
White	265/1777	309/1815	6.26	7.15		0.87 (0.74–1.03)
Black/African American	43/140	42/124	13.85	17.24		0.78 (0.51–1.19)
Asian	145/717	201/723	8.54	12.04		0.69 (0.55–0.85)
Other	51/199	48/179	12.73	12.98		1.04 (0.70–1.55)
				(0,25 0,50 1	.,00 2,00
s GL et al.(FIDELIO-DKD), N Engl	I Mod 2020				Favours finerenone	Favours placebo

Bakris GL et al. (FIDELIO-DKD), N Engl J Med 2020

Nephroprotective Agents in Older Patients with Diabetes

Treat as youngers to prevent ESKD as "the major goal" ...BUT...stricter follow up and personalized therapy !!!